Plugging OpenVMS into the Cloud

General comments and examples

Brett Cameron
September 2014

9/23/2014

Abstract

This short talk provides an overview of how OpenVMS can interact with and utilize cloud-based services.
General techniques for interacting with cloud-based services from OpenVMS will be considered, with

particular attention being given to interfacing with the OpenStack Object Storage service and a prototype
RESTful cloud-based message queuing service.

9/23/2014

AGENDA

*Interfacing with cloud-based services

* Example — plugging OpenVMS into the
OpenStack Object Storage service

* Example — message queuing as a service
*Summary
* Questions

Interfacing with cloud-based services

« Interfaces to many cloud services are implemented using HTTP(S)/REST API's
 Representational state transfer (REST)
- Afancy (and somewhat miss-used) term for a fairly simple concept
- See my talk with Jeff Allen “OpenVMS and web services: theory and practise” for more on this topic

» Typical examples of such API's would be:

Identity Service API
« One-stop authentication service for all services within the cloud

Object Storage API
= Store, retrieve, delete, copy, and examine objects (files)

Compute API
« C(reate, destroy, reboot, and rebuild virtual servers

Block Storage API
¢ Provides a means of enabling additional storage volumes for compute instances

— Monitoring, Load Balancing, DNaaS, DBaasS, SDN, and any other services that may be provided by the cloud in question

9/23/2014

Interfacing with cloud-based services

* These API's generally provide a means to perform administrative operations relating to the service

 For some services there may also be additional (non-HTTP/REST-based) interfaces

* And some services may provide HTTP/REST-based interfaces to programmatic (non-administrative)
functions

* Cloud providers generally provide high-level command-line tools and bindings for various languages that
use these API's to interface with the associated services

— Most are not particularly OpenVMS-friendly
— Tend to be written in languages such as Ruby or Python
— Not readily callable from OpenVMS 3GL programs

« Click here to take a look at a typical REST API definition (hopefully I'm hooked up to the internet)

Interfacing with cloud-based services

« Interfacing with cloud-based services is for the most part quite straightforward
— Dealing with XML or JSON-formatted request and response messages is generally the most problematical aspect

+ Things like cURL and libcURL are your friends!
— You canin fact use cURL to issue many service calls manually (although dealing with some of the responses may be fun)

— A command line tool like cURL can be very useful for basic testing and prototyping

* From a programmatic perspective you will typically need:
— AnHTTP(S) client API
¢ libcURL s a good choice (http://curl.haxx.se/libcurl/)
- Either an XML or a JSON parser/API
¢ Most HTTP/REST API calls return JSON or XML responses
o You can specify which format you want to use

« | prefer JSON
o It tends to be a little much more efficient and somewhat easier to work with (for me anyway)

o Thejson-clibrary is easily ported to OpenVMS (see https://github.com/json-c/json-c)

http://hg.rabbitmq.com/rabbitmq-management/raw-file/rabbitmq_v3_3_5/priv/www/api/index.html
http://curl.haxx.se/libcurl/
https://github.com/json-c/json-c

9/23/2014

AGENDA

*Interfacing with cloud-based services

Example - plugging OpenVMS into the
OpenStack Object Storage service

* Example — message queuing as a service
*Summary
* Questions

OpenStack Object Storage

* Aredundant, scalable, and dynamic storage service
» Asafe, secure, network-accessible way to store data
« (an store an essentially unlimited quantity of objects (files)
— Each file can be up to 5GB
— With segmented objects, it is possible upload and store objects of virtually any size
« Allows users to store and retrieve files via a simple HTTP/REST interface
- See http://docs.openstack.org/api/openstack-object-storage/1.0/content/ for API details
- It could be likened to a sort of primitive Dropbox-like facility

* An HTTP/REST API is by itself is generally not all that useful, but it is ubiquitous

— Could use something like cURL, but would typically want to implement a higher-level API on top of the
REST API

— The higher level API can then be used by other programs
— As a proof-of-concept exercise we've developed a simple high-level API and CLI utility for OpenVMS...

http://docs.openstack.org/api/openstack-object-storage/1.0/content/

9/23/2014

High-level prototype API routines

* API functions:
hpc$init ()
hpc$authenticate ()
hpc$set proxy ()
hpcSlist container ()
hpc$free object list()
hpc$create container ()
hpcSdelete container ()
hpcSdelete object ()
hpc$get statistics()
hpc$get object ()
hpc$copy object ()
hpc$get usage ()
hpcSput _object ()

A simple set of functions to handle
authentication, the creation, deletion, and
browsing of containers, and the uploading

and downloading of files (objects). Very
much like FTP.

« Currently really only callable from C code, but straightforward to make language-neutral

* Leverages libcURL for HTTP(S) client API
 Leverages json-c for JSON parsing

CLI utility

9/23/2014

CLI utility

Under the hood

Let’s enable tracing and have a look at a typical JSON response...

Under the hood, the HTTP response looked like this...

json.txt

9/23/2014

Potential enhancements

* Functionality to backup/stream files to object storage containers

* API needs to be made language-neutral

* Include support for other services (particularly Compute)
 Understanding and handling of OpenVMS file types and RMS attributes

AGENDA

*Interfacing with cloud-based services

* Example — plugging OpenVMS into the
OpenStack Object Storage service

Example — message queuing as a service
*Summary
* Questions

9/23/2014

Message queuing as a service

* Prototype cloud-based message queuing service developed last year for HP Cloud
* May or may not be production-ized
 Supports point-to-point and publish/subscribe messaging operations
— Can be multiple subscribers to a topic/queue
* Highly scalable, fault tolerant, secure, ...
« Canbe used in-cloud or over WAN/internet links
« HTTP(S)/REST interface
— Somewhat similar to Amazon's SQS and SNS services and Iron.MQ (http://www.iron.io/mq)

* Again, we've developed a simple prototype high-level APl and CLI utility for OpenVMS...

Message queuing as a service

 High-level OpenVMS API functions

msgas$init ()

msgas$done () Subscribe to a topic/queue,

specifying a callback URL

msgas$authenticate ()
msgas$set proxy ()
msgas$create topic()

msgas$delete topic()

Consume messages
forwarded by the service to
callback URL's. Uses the
embeddable Mongoose web
server (see
http://code.google.com/p/m

ongoose/).

msgass$debug ()
msgasS$trace ()
msgas$publish ()
msgass$get ()

msgas$subscribe ()
msgas$unsubscribe ()

msgas$consume ()

* Currently only callable from C, but easily made generic

http://www.iron.io/mq
http://code.google.com/p/mongoose/

9/23/2014

CLI utility

Simple example using the CLI to authenticate, create a topic/queue, publish a message, get a message, and
delete the topic/queue:

AGENDA

*Interfacing with cloud-based services

* Example — plugging OpenVMS into the
OpenStack Object Storage service

* Example — message queuing as a service
Summary
*Questions

9/23/2014

Summary

* Interfaces to cloud-based services are typically HTTP(s)/REST-based
* These cloud-based services are readily accessible from OpenVMS

* Prototype high-level OpenVMS 3GL-friendly API's and utilities have been developed for object
storage and message queuing services

* I'lltalk more about some of this stuff later on when we are discussing NoSQL databases, and |
will be discussing REST in a little more detail in my session with Jeff Allen “OpenVMS and web
services; theory and practice”

AGENDA

*Interfacing with cloud-based services

* Example — plugging OpenVMS into the
OpenStack Object Storage service

* Example — message queuing as a service
*Summary
*Questions

9/23/2014

uestions

