
9/23/2014

Plugging OpenVMS into the Cloud

General comments and examples

Brett Cameron
September 2014

2

Abstract

This short talk provides an overview of how OpenVMS can interact with and utilize cloud-based services.
General techniques for interacting with cloud-based services from OpenVMS will be considered, with
particular attention being given to interfacing with the OpenStack Object Storage service and a prototype
RESTful cloud-based message queuing service.

9/23/2014

AGENDA

• Interfacing with cloud-based services

•Example – plugging OpenVMS into the
OpenStack Object Storage service

•Example – message queuing as a service

•Summary

•Questions

4

Interfacing with cloud-based services
• Interfaces to many cloud services are implemented using HTTP(S)/REST API's

• Representational state transfer (REST)

– A fancy (and somewhat miss-used) term for a fairly simple concept

– See my talk with Jeff Allen “OpenVMS and web services: theory and practise” for more on this topic

• Typical examples of such API’s would be:

– Identity Service API

• One-stop authentication service for all services within the cloud

– Object Storage API

• Store, retrieve, delete, copy, and examine objects (files)

– Compute API

• Create, destroy, reboot, and rebuild virtual servers

– Block Storage API

• Provides a means of enabling additional storage volumes for compute instances

– Monitoring, Load Balancing, DNaaS, DBaaS, SDN, and any other services that may be provided by the cloud in question

9/23/2014

5

• These API's generally provide a means to perform administrative operations relating to the service

• For some services there may also be additional (non-HTTP/REST-based) interfaces

• And some services may provide HTTP/REST-based interfaces to programmatic (non-administrative)
functions

• Cloud providers generally provide high-level command-line tools and bindings for various languages that
use these API's to interface with the associated services

– Most are not particularly OpenVMS-friendly

– Tend to be written in languages such as Ruby or Python

– Not readily callable from OpenVMS 3GL programs

• Click here to take a look at a typical REST API definition (hopefully I’m hooked up to the internet)

Interfacing with cloud-based services

6

• Interfacing with cloud-based services is for the most part quite straightforward

– Dealing with XML or JSON-formatted request and response messages is generally the most problematical aspect

• Things like cURL and libcURL are your friends!

– You can in fact use cURL to issue many service calls manually (although dealing with some of the responses may be fun)

– A command line tool like cURL can be very useful for basic testing and prototyping

• From a programmatic perspective you will typically need:

– An HTTP(S) client API

• libcURL is a good choice (http://curl.haxx.se/libcurl/)

– Either an XML or a JSON parser/API

• Most HTTP/REST API calls return JSON or XML responses

o You can specify which format you want to use

• I prefer JSON

o It tends to be a little much more efficient and somewhat easier to work with (for me anyway)

o The json-c library is easily ported to OpenVMS (see https://github.com/json-c/json-c)

Interfacing with cloud-based services

http://hg.rabbitmq.com/rabbitmq-management/raw-file/rabbitmq_v3_3_5/priv/www/api/index.html
http://curl.haxx.se/libcurl/
https://github.com/json-c/json-c

9/23/2014

AGENDA

• Interfacing with cloud-based services

•Example – plugging OpenVMS into the
OpenStack Object Storage service

•Example – message queuing as a service

•Summary

•Questions

8

OpenStack Object Storage
• A redundant, scalable, and dynamic storage service

• A safe, secure, network-accessible way to store data

• Can store an essentially unlimited quantity of objects (files)

– Each file can be up to 5GB

– With segmented objects, it is possible upload and store objects of virtually any size

• Allows users to store and retrieve files via a simple HTTP/REST interface

– See http://docs.openstack.org/api/openstack-object-storage/1.0/content/ for API details

– It could be likened to a sort of primitive Dropbox-like facility

• An HTTP/REST API is by itself is generally not all that useful, but it is ubiquitous

– Could use something like cURL, but would typically want to implement a higher-level API on top of the
REST API

– The higher level API can then be used by other programs

– As a proof-of-concept exercise we've developed a simple high-level API and CLI utility for OpenVMS...

http://docs.openstack.org/api/openstack-object-storage/1.0/content/

9/23/2014

9

High-level prototype API routines
• API functions:

hpc$init()

hpc$authenticate()

hpc$set_proxy()

hpc$list_container()

hpc$free_object_list()

hpc$create_container()

hpc$delete_container()

hpc$delete_object()

hpc$get_statistics()

hpc$get_object()

hpc$copy_object()

hpc$get_usage()

hpc$put_object()

• Currently really only callable from C code, but straightforward to make language-neutral

• Leverages libcURL for HTTP(S) client API

• Leverages json-c for JSON parsing

A simple set of functions to handle
authentication, the creation, deletion, and
browsing of containers, and the uploading

and downloading of files (objects). Very
much like FTP.

10

CLI utility

$ define hpc$proxy "16.172.48.10:8080"

$

$ run hpc

set noverify

authenticate "brett.cameron@hp.com" "xxxxxxxxxxxxxxx" "xxxxxxxxxxxxxx"

create container "xyz"

put/log "bootcamp.com" "xyz"

list container "xyz"

show usage

get/log "bootcamp.com" "xyz"

create container "zzz"

copy "bootcamp.com" "xyz" "zzz"

list container "zzz"

delete object "bootcamp.com" "xyz"

delete object "bootcamp.com" "zzz"

list container "xyz"

list container "zzz"

delete container "xyz"

delete container "zzz"

exit

$

$ exit

9/23/2014

11

$ define hpc$proxy "16.172.48.10:8080"

$

$ run hpc

set noverify

authenticate "brett.cameron@hp.com" "xxxxxxxxxxxxxxx" "xxxxxxxxxxxxxx"

list container "brc1"

exit

$

$ exit

hpcdef.OBJ 2576 28-Aug-2014 23:15:50

main.OBJ 3920 28-Aug-2014 23:15:52

messages.msg 2768 03-Sep-2014 03:53:27

msgasdef.OBJ 2296 28-Aug-2014 23:15:56

ops.OBJ 16624 28-Aug-2014 23:16:00

shells.OBJ 28784 28-Aug-2014 23:16:04

tables.OBJ 3944 28-Aug-2014 23:16:0

CLI utility

12

Under the hood

$ define hpc$proxy "16.172.48.10:8080"

$

$ run hpc

set noverify

authenticate "brett.cameron@hp.com" "xxxxxxxxxxxxxxx" "xxxxxxxxxxxxxx"

set trace

set debug

list container "brc1"

exit

$

$ exit

Let’s enable tracing and have a look at a typical JSON response...

Under the hood, the HTTP response looked like this...

json.txt

9/23/2014

13

Potential enhancements

• Functionality to backup/stream files to object storage containers

• API needs to be made language-neutral

• Include support for other services (particularly Compute)

• Understanding and handling of OpenVMS file types and RMS attributes

AGENDA

• Interfacing with cloud-based services

•Example – plugging OpenVMS into the
OpenStack Object Storage service

•Example – message queuing as a service

•Summary

•Questions

9/23/2014

15

Message queuing as a service
• Prototype cloud-based message queuing service developed last year for HP Cloud

• May or may not be production-ized

• Supports point-to-point and publish/subscribe messaging operations

– Can be multiple subscribers to a topic/queue

• Highly scalable, fault tolerant, secure, …

• Can be used in-cloud or over WAN/internet links

• HTTP(S)/REST interface

– Somewhat similar to Amazon's SQS and SNS services and Iron.MQ (http://www.iron.io/mq)

• Again, we've developed a simple prototype high-level API and CLI utility for OpenVMS...

16

• High-level OpenVMS API functions

msgas$init()

msgas$done()

msgas$authenticate()

msgas$set_proxy()

msgas$create_topic()

msgas$delete_topic()

msgas$debug()

msgas$trace()

msgas$publish()

msgas$get()

msgas$subscribe()

msgas$unsubscribe()

msgas$consume()

• Currently only callable from C, but easily made generic

Subscribe to a topic/queue,
specifying a callback URL

Consume messages
forwarded by the service to
callback URL's. Uses the
embeddable Mongoose web
server (see
http://code.google.com/p/m
ongoose/).

Message queuing as a service

http://www.iron.io/mq
http://code.google.com/p/mongoose/

9/23/2014

17

CLI utility

$ run msgas

set debug

set trace

set proxy "16.172.48.10:8080"

authenticate "brett.cameron@hp.com" "xxxxxxxxxxxxxxx" "xxxxxxxxxxxxxx"

create topic brc

publish/topic=brc "This is a test message"

get/topic=brc

delete topic brc

quit

$

$ exit

Simple example using the CLI to authenticate, create a topic/queue, publish a message, get a message, and
delete the topic/queue:

AGENDA

• Interfacing with cloud-based services

•Example – plugging OpenVMS into the
OpenStack Object Storage service

•Example – message queuing as a service

•Summary

•Questions

9/23/2014

19

Summary
• Interfaces to cloud-based services are typically HTTP(s)/REST-based

• These cloud-based services are readily accessible from OpenVMS

• Prototype high-level OpenVMS 3GL-friendly API's and utilities have been developed for object
storage and message queuing services

• I’ll talk more about some of this stuff later on when we are discussing NoSQL databases, and I
will be discussing REST in a little more detail in my session with Jeff Allen “OpenVMS and web
services; theory and practice”

AGENDA

• Interfacing with cloud-based services

•Example – plugging OpenVMS into the
OpenStack Object Storage service

•Example – message queuing as a service

•Summary

•Questions

9/23/2014

Questions

