
10/14/2014

The Polyglot Rabbit

Adventures on OpenVMS with
RabbitMQ, Erlang, and multi-
protocol messaging

Brett Cameron
September 2014

2

Abstract
RabbitMQ (http://www.rabbitmq.com) is a popular 100% Erlang-based (http://www.erlang.org/) Open Source message queuing system that
implements the Advanced Message Queuing Protocol (AMQP). It has been estimated that there are presently some 35,000+ production
deployments of RabbitMQ across the globe, and this number is growing rapidly. Most of these deployments are business-critical, underpinning
everything from internet-based pizza ordering systems through to providing the central nervous system for OpenStack-based cloud deployments.
RabbitMQ natively supports versions 0.8.0 and 0.9.1 of AMQP; however, a somewhat overlooked capability of RabbitMQ is its ability to also readily
provide support via a flexible plugin architecture for a variety other popular Open Source message queuing protocols, including STOMP, MQTT,
ZeroMQ, and RESTful messaging via the RabbitHub plugin. Most good message queuing protocols share many features in common; however some
are better suited to a particular set of use cases than others. This ability of RabbitMQ to be able to seamlessly receive and propagate messages
simultaneously via multiple protocols is an extremely powerful facility, and one that affords great flexibility. For example, it means that it is
possible to use the most appropriate protocol for a particular function or to simultaneously use different protocols to disseminate the same data to
different types of users via the most appropriate protocol without having to develop and maintain any separate gateway components. As a
consequence of work done by the speaker to port Erlang to OpenVMS and to develop OpenVMS-friendly client API's, it is possible to fully utilize this
message queuing technology in an OpenVMS environment. In this talk the presenter will discuss the multi-protocol features of RabbitMQ, how the
capabilities of Erlang have been utilised to implement the powerful RabbitMQ plugin architecture, and how these capabilities of RabbitMQ can be
used to implement a robust and highly scalable multi-protocol Open Source-based messaging hub.

http://www.rabbitmq.com/
http://www.erlang.org/

10/14/2014

3

About me

Brett Cameron currently works as a senior architect with HP's corporate Cloud Services
group, focusing on the design and implementation of message queuing and related
integration services for customers and for internal use. Brett lives in Christchurch, New
Zealand, and has worked in the software industry for some 22 years. In that time he has
gained experience in a wide range of technologies, many of which have long since been
retired to the software scrapheap of dubious ideas. In recent years Brett has specialized
in systems integration, and the design and implementation of large distributed systems
for HP’s enterprise customers. This work has seen Brett get involved in the research and
development of low-latency and highly scalable messaging solutions for the Financial
Services sector running on HP platforms, and as a consequence of this work, Brett has
been involved in several interesting Open Source projects, and he has been responsible
(or should that be irresponsible) for porting various pieces of Open Source software to
the HP OpenVMS platform. Brett holds a doctorate in chemical physics from the
University of Canterbury, and still maintains close links with the University, working as a
part time lecturer in the Computer Science and Electronic and Computer Engineering
departments. In his spare time, Brett enjoys listening to music, playing the guitar, and
drinking beer.

AGENDA
• Introduction

• AMQP

• RabbitMQ

• RabbitMQ plugins

• Multi-protocol Open Source messaging hub

• Summary

• Questions

10/14/2014

5

Introduction
• Brief overview of RabbitMQ and AMQP

• RabbitMQ plugins

o Overview (what, where, why, how...)

o Plugin architecture

• Using RabbitMQ and various plugins to create a multi-protocol Open Source OpenVMS-based
messaging hub

o Setting up a RabbitMQ cluster on OpenVMS

o Cluster performance/scalability

o Multi-protocol use-cases/examples

o Futures

• Wrap-up/questions

AGENDA
• Introduction

• AMQP

• RabbitMQ

• RabbitMQ plugins

• Multi-protocol Open Source messaging hub

• Summary

• Questions

10/14/2014

7

AMQP introduction
• AMQP (Advanced Message Queuing Protocol) is an open standard application layer protocol for message

oriented middleware

– It is an open protocol (like TCP, HTTP, SMTP, and so on)

• The defining features of AMQP are:

– Message orientation

– Queuing

– Routing (including point-to-point and publish-and-subscribe)

– Reliability

– Security

• AMQP mandates the behaviour of the messaging provider and client

– Implementations from different vendors are truly interoperable

– Previous attempts to standardise middleware have focussed at the API level

o This approach did not create interoperability

– Instead of merely defining an API, AMQP defines a wire-level protocol

o A wire-level protocol is a description of the format of the data that is sent across the network as a stream of octets

o Any tool that can create and interpret messages that conform to the defined wire-level protocol can interoperate with any

other compliant tool, irrespective of implementation language

8

History
• AMQP was originally designed to provide a vendor-neutral protocol for managing the flow of messages across

an enterprise's business systems

• AMQP was developed from mid-2004 to mid-2006 by JPMorgan Chase and iMatix

– iMatix also developed the original AMQP implementation (OpenAMQ)

– See http://www.openamq.org

• JPMorgan Chase and iMatix documented the protocol and assigned it to a working group that included Red Hat,

Cisco Systems, TWIST, IONA, and iMatix

• As of June 2014, the working group consisted of:

– Bank of America, Bloomberg Finance, Credit Suisse, Deutsche Börse, JPMorgan Chase Bank, Informatica, LogMeIn, Microsoft,

Red Hat, SITA, Software AG, US Department of Homeland Security, WSO2

– Mixture of Financial Services companies and technology providers

– See http://www.amqp.org

• Although AMQP originated in the financial services industry, it has general applicability to a broad range of

middleware problems

http://www.openamq.org/
http://www.amqp.org/

10/14/2014

9

History

Diagram adapted from http://www.manning.com/videla/

10

Motivation
• AMQP was born of frustration…

• Message oriented middleware needs to be everywhere in order to be useful, but…

– Traditionally dominant solutions are typically very proprietary

• They are frequently too expensive for everyday use

• They invariably do not interoperate

– The above issues with proprietary solutions have resulted in numerous home-grown developments

• Custom middleware solutions

• Custom adaptors

– The net result for a large enterprise is middleware hell

• Hundred’s of applications, thousand’s of links

• Every other connection is different

• Massive waste of effort

– Costly to implement

– Costly and difficult to maintain

http://www.manning.com/videla/

10/14/2014

11

The AMQP model – key features
Key features of AMQP include:

• Queuing with strong delivery assurances

• Event distribution with flexible routing

• Large message capability (gigabytes)

• Global addressing scheme (email-like)

• Meets common requirements of mission-critical systems

• Service oriented

File transfer

report

Messaging

transact

Publish/
subscribe

detect

AMQP aims to become the solution for enterprise messaging: Any language,
any model, any payload, any platform, reliable, interoperable, manageable,
performant, scalable. Big aspirations!

12

Comparison with some other protocols

AMQP can accommodate all of the above as use-cases… and switch between them
(open, ubiquitous, and adaptable)

Protocol Comments

SMTP Unreliable, slow

HTTP Synchronous, semi-reliable, no routing

XMPP No delivery fidelity or queue management

FTP Point to point, transient, does not work well with NAT/SSL

MQ Exactly once

TCP At least once, reliable but short lived, no application-level state management

UDP Fast but has no delivery guarantees

10/14/2014

13

The AMQP model – key components
• Message broker

− Applications connect to a broker to participate in the AMQP

network

− The connection is used to establish a session

• Sessions provide state between connections, establish

identity, ease failover

− Connections are further subdivided into channels

• Multiple threads of control within an application can share

one connection

• Message layer

− Exchanges

• Software switches or routers

• Message producers publish messages to exchanges

• Three basic types:

− Direct, fan-out, and topic

− Queues

• Are (essentially) FIFO containers that hold messages

• Can be memory only or backed by disk

• Have various convenience options on who can use them,

automatic clean-up, and so on

− Bindings

• A binding associates an exchange with a queue

• Messages published to an exchange are routed by the

exchange to any bound queues

• A peer-to-peer wire protocol

Note that we are really only talking about AMQP 0.8 and 0.9.1 here.
Things are a bit different with AMQP 1.0, which only defines the

network wire-level protocol for the exchange of messages between
two endpoints. The 1.0 standard supports exchanging messages in

peer-to-peer fashion or via brokered topologies.

14

Scales of deployment

Type of deployment Possible scenario

• Developer/casual use • 1 server, 1 user, 10 queues, 1 message per second

• Production application • 2 servers, 10-100 users, 10-50 queues, 25 messages per second

• Departmental mission critical

application

• 4 servers, 100-500 users, 50-100 queues, 250 messages per second

• Regional mission critical

application

• 16 servers, 500-2,000 users, 100-500 queues and topics, 2,500

messages per second

• Global mission critical

application

• 64 servers, 2K-10K users, 500-1000 queues and topics, 25,000

messages per second

• Market data (trading) • 200 servers, 5K users, 10K topics, 250K messages per second

As well as volume, the latency of message transfer is often important; AMQP implementations can deliver messages
with latencies of less than 200μs

AMQP implementations can cover deployment at different levels of scale ranging from trivial to the
mind-boggling... no job too big or too small.

10/14/2014

15

Some typical usage patterns

• Direct exchanges

– Simple point-to-point queue delivery

– Abstracted point-to-point queue

– Load-balanced point-to-point queue delivery

– RPC

• Fan-out and topic exchanges

– Dynamic (non-persistent) publish/subscribe delivery

– Durable (persistent) publish/subscribe delivery

• Inter-network connectivity

Let’s briefly look at the three primary exchange types...

16

M3M1 M2

Direct exchanges

Queue
BindingRouting

key

• Point to point messaging
• A single message that needs to be sent to a single

recipient
• Can have multiple consumers (load will be balanced

across them)

10/14/2014

17

Fan-out exchange

• A fan-out exchange is a “publish-subscribe” mechanism
• Used to send a single message to multiple recipients (very similar to an email distribution

list)
• Any queue bound to a fan-out exchange will receive any message sent to the exchange
• Message consumption of each queue will be dependent on the number of consumers and

speed of message consumption

M3M1 M2

M3M1 M2

M3M1 M2

Queue 1

Queue 1

Queue 3

Same message sent
to multiple
queues/recipients

18

M1 M2

M1 M2

M3

M1

Topic exchange

Queue 1

Queue 2

Queue 3

Binding pattern B

Binding pattern C

Binding pattern A

• Content-based routing mechanism
• Messages posted to queues based on binding pattern

(PCRE used)
• Very powerful mechanism

10/14/2014

AGENDA
• Introduction

• AMQP

• RabbitMQ

• RabbitMQ plugins

• Multi-protocol Open Source messaging hub

• Summary

• Questions

20

10/14/2014

21

• A powerful Open Source message broker (message-oriented middleware)

– The leading (and arguably the most popular) implementation of AMQP

– Provides a robust and flexible messaging platform designed to interoperate with other messaging systems

– See http://www.rabbitmq.com for more information

• A multi-protocol broker engine implemented in Erlang for exceptional scalability and fault-tolerance

– 100% Erlang/OTP (an inspired move)

• RabbitMQ essentially comprises the following components:

– The RabbitMQ broker (supports AMQP 0.8 and 0.9.1, and supports AMQP 1.0 via a plugin)

– Adapters for HTTP, ZeroMQ, STOMP, MQTT, and other protocols

– AMQP client libraries for Erlang, Java, .NET, and C/C++

• AMQP clients for numerous other languages are available from other vendors and/or the Open Source community

• Python, Ruby, PHP, Clojure, Node.js, Go, ... just about any language you can think of

– Large assortment of useful plugins

What is RabbitMQ?

22

• 2006

– Rabbit Technologies Ltd. founded and the first version of RabbitMQ was born

– RabbitMQ source code is released under the Mozilla Public License

• 2006 – today

– Rapid adoption (good product, catchy name, excellent support), incremental rollout of new features

• April 2010

– Rabbit Technologies Ltd. was acquired in April 2010 by VMware

• April 2013

– VMware and EMC spin out some of their cloud-related computing
projects - including RabbitMQ - into an autonomous company,
Pivotal Software, Inc. (http://www.gopivotal.com/)

Very brief RabbitMQ history

http://www.rabbitmq.com/
Erlang-OTP.pptx
http://www.gopivotal.com/

10/14/2014

23

In the next few slides we’ll have a quick look at:

• Scalability through clustering

• High-availability

• Management and monitoring

• Security

• T-shirt sizes to suit all requirements

RabbitMQ business-critical features

24

RabbitMQ clustering

• Clustering can be used to elastically scale the messaging infrastructure

• Producers and consumers can send and retrieve messages by connecting to any broker in the cluster, allowing load to be spread evenly
and avoid having a single point of failure for all queues

• A queue only lives on one cluster node (actually, with HA queue replication, it's not quite that simple... see next slide)

• Consumers are able to retrieve any message from any queue in the cluster, even if they are not connected to the server that owns the
queue

• By using clustering, you can add new queues on new brokers without re-configuring clients

RMQ Cluster1

RMQ2

RMQ1Queue 1

RMQ3

1

3

2

Queue 3

Queue 2

Scalability and fault
tolerance.

10/14/2014

25

ESX1

RMQ1

sheraton.queue

marriott.queue

slave

master

Node B

RMQ2

Queue 1

marriott.queueQueue 2

Node A

RMQ1

Queue 1

Queue 2

High availability

• Highly available, mirrored queues (and replication policies)

• Potentially better performance and less downtime

• Downside is more network traffic inside the RabbitMQ cluster as messages are replicated to slave queues on message send

• Need to add a little code to some clients to make them HA cluster aware (so they will try a backup server when a primary
connection fails)

26

• The RabbitMQ Management plugin provides an
HTTP-based RESTful API for management and
monitoring the RabbitMQ broker

• Two tools are provided that use this API:

– A powerful browser-based UI

– A powerful command line tool
(rabbitmqadmin)

– rabbitmqadmin can perform the same

actions as the web-based UI, and is
convenient for use when scripting

• Or you can use the API to develop your own
tools...

Management and monitoring

10/14/2014

27

Virtual hosts (vhosts)

• When an AMQP client establishes a connection to an AMQP server, it specifies a virtual host within which it intends to operate

• A first level of access control is enforced at this point, with the server checking whether the user has any permissions to
access the virtual hosts, and rejecting the connection attempt otherwise

• Vhosts are essentially independent RabbitMQ message brokers within the RabbitMQ process with their own queues,
exchanges, permissions, and so on

Users and permissions

• A second level of access control is enforced when certain operations are performed on resources

– Resources (exchanges and queues) are named entities inside a particular virtual host

• RabbitMQ distinguishes between configure, write, and read operations on a resource

– Configure operations create or destroy resources, or
alter their behavior

– Write operations inject messages into a resource

– Read operations retrieve messages from a resource

Security

28

Some other AMQP implementations
• OpenAMQ (http://www.openamq.org)

– Original Open Source implementation of AMQP, written in C by iMatix

o No longer supported (sadly)

– Runs on Linux, AIX, Solaris, Windows, OpenVMS, HP-UX

– Includes broker, APIs in C/C++ and Java JMS, remote administration shell, scripting, federation, failover, and AMQP-over-HTTP via the

RestMS protocol

• Apache Qpid (http://qpid.apache.org/)

– A project in the Apache Foundation

– Includes broker and APIs that support C++, Ruby, Java, JMS, Python and .NET; AMQP 1.0 support

• Red Hat Enterprise MRG (http://www.redhat.com/mrg/)

– Rich set of features including management, federation, Active-Active clustering, and APIs for C++, Ruby, Java, JMS, Python .NET; AMQP

1.0 support

• SwiftMQ (http://www.swiftmq.com/)

– An enterprise-grade JMS messaging product with full support for AMQP 1.0

• StormMQ (http://stormmq.com/)

– A cloud-hosted messaging service based on AMQP

http://www.openamq.org/
http://qpid.apache.org/
http://www.redhat.com/mrg/
http://www.swiftmq.com/
http://stormmq.com/

